
J
H
E
P
0
9
(
2
0
0
7
)
1
2
5

Published by Institute of Physics Publishing for SISSA

Received: August 6, 2007

Revised: September 17, 2007

Accepted: September 19, 2007

Published: September 28, 2007

Warping and F-term uplifting

Philippe Brax

Service de Physique Théorique, CEA/DSM/SPhT,
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1. Introduction

If supersymmetry is realised in nature, it must be broken. Low scale supersymmetry

(SUSY) breaking is phenomenologically favoured: it addresses the hierarchy problem, and

leads to gauge coupling unification and radiative electroweak symmetry breaking. If indeed

the scale of SUSY breaking is low, and the LHC sees the superpartners of the standard

model fields and measures their masses, what would this tell us about the underlying

microphysics? String theory has tried to answer this question since its early days [1], but

only recently has real progress been made thanks to a better understanding of the moduli

sector and the associated sources of SUSY breaking.

Cosmological observations indicate that our universe undergoes a phase of accelerated

expansion. This motivates the search for de Sitter vacua of string theory. KKLT have

found an explicit way of constructing de Sitter solutions with a small cosmological constant

in the context of type IIB string theory, using a combination of fluxes, D-branes and

non-perturbative effects [2]. In their proposal, background RR and NS fluxes stabilise
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the complex structure moduli of a Calabi-Yau compactification at some high scale. The

remaining Kähler moduli can then be described by some low energy effective theory. Non-

perturbative effects are invoked to stabilise the Kähler moduli. The resulting vacuum is

SUSY preserving and anti de Sitter. An anti-D3-brane is added to uplift this solution to a

dS vacuum with broken SUSY.

Since the original KKLT paper many variations to their stabilisation mechanism have

been put forward. Instead of an D3 brane, a D-term originating from an anomalous U(1)

could be used for uplifting [3]. This idea was put in a manifestly gauge invariant form in [4],

which circumvents the problems of using D-terms for uplifting [5, 6]. The great advantage

of an uplifting D-term over the KKLT proposal is that the whole setup is supersymmetric,

with SUSY broken spontaneously in the vacuum; in contrast, the D3 brane employed in

KKLT breaks SUSY explicitly. But the price to pay is that the uplifting term is naturally

of order one in Planck units, giving rise to a large gravitino mass m3/2 ∼ mPl/(8π) and

thus to high scale SUSY breaking. Uplifting mechanisms using F -terms have also been

analysed [7 – 9], and models exist that are supersymmetric and have a small gravitino

mass [10, 11].

In this paper we consider these issues within the context of warped compactifica-

tions [12 – 14] and study the effects of the warping on the Kähler potential. A central

assumption in this work is that the throat dominates the volume of the 6D compactified

space. We find that the F -terms are warped down while the D-terms are warping inde-

pendent. Hence moduli stabilisation models with consistent D-terms and a small positive

cosmological constant resulting from a large warping are only obtainable for vanishingly

small D-terms. The resulting models have an F -term uplifting. We apply this setup to the

case of string inspired configurations with D7-branes.

The requirement of gauge invariance constrains the possible setup considerably. In

a general compactification, the non-perturbative effects needed to stabilise the volume

modulus can come from either gaugino condensation on D7-branes or from D3 Euclidean

instantons. The stack of D7s on which gaugino condensation occurs is to be placed in the

bulk. It cannot be in the throat, as then the gauge coupling of the Yang-Mills theory living

on the D7s is red-shifted, leading to a vacuum with an exponentially small modulus VEV,

and the effective field theory breaks down. Gauge invariance of both the superpotential

from gaugino condensation and the D-term from fluxes is only possible if there are charged

chiral fields living on the branes. This is achieved by considering magnetised D7-branes.

In addition to the moduli fields, we should consider the origin of the standard model fields.

The standard model quark and lepton (super)fields, which are chiral and in bi-fundamental

representations, correspond to strings stretching between stacks of D7-branes [15]. Gauge

couplings of order one dictate that the standard model branes are located in the bulk

region. As usual, the supersymmetry breaking in the moduli sector is transferred to the

superpartners of the standard model fields through gravitational interactions.

We study the string inspired examples where the moduli stabilisation superpotential

results from the presence of magnetised D7-branes with a chiral spectrum and gaugino

condensation [8]. We find no consistent Minkowski solutions with vanishingly small D-

terms, as needed for low scale SUSY breaking. However, starting from a stable AdS
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vacuum with D ≈ 0 (for example the SUSY AdS vacuum with F = D = 0), we find that

an ISS uplifting can be applied leading a to small gravitino mass for a reasonable warp

factor.

This paper is organised as follows. In the next section we perform the dimensional

reduction of a warped space-time from ten to four dimensions, and derive the form of the

Kähler potential. In addition, we discuss how the various elements in the effective action

— the Kähler potential, the superpotential, the D-term, and the gauge couplings — red

shift due to the warping. In section 3 we study moduli stabilisation with consistent D-

term and F -term uplifting. In section 4 we apply these results to string inspired F -term

uplifting models. The case of an ISS uplifting is considered in this section. We end with

some concluding remarks.

2. Dimensional reduction

In this section we discuss dimensional reduction in warped compactifications. This allows

us to derive the form of the various terms in the low energy effective four-dimensional

theory, and in particular how these terms are affected by the warping.

2.1 The Kähler potential

The background space-time metric arising in warped IIB theories preserving N = 1 SUSY

is of the form [12]

ds2
10 =

α′

e2A(y)R2(x)
gµνdxµdxν + R2(x)e2A(y)gmndymdyn (2.1)

with the length xµ parameterising our four-dimensional world, and the dimensionless ym

the 6 extra dimensions. We scale ym so that V6 ≡
∫

d6y
√

g6 = (2π)6, where g6 = det gmn.

The radius R(x) represents the only Kähler modulus and measures the size of the extra

dimensions.

The warp factor eA(y) is present due to the non-zero fluxes on the compactification

manifold. The manifold is assumed to possess two different regions. First of all, in the

bulk the metric gmn and the warp factor are of order one. In the throat, the metric is shifted

in such a way that eA(y) is exponentially large. Throughout this work we assume that the

throat dominates the volume of the 6D compactified space. We model the throat as a

region akin to the AdS bulk of the Randall-Sundrum model with one preferred direction.

Along the throat, the warp factor is essentially independent of the transverse coordinates

to the throat direction. In the tip of the throat solution constructed by Giddings, Kachru

and Polchinski, eAm ≈ e2πK/3Mgs with M units of R-R flux and K units of NS-NS flux [12].

gs is the string coupling constant. We also assume that the throat direction realises a

foliation of the manifold in such a way that compact cycles in the transverse directions to

the throat exist. In particular, we will assume that one can wrap Dp-branes around (p−3)

cycles located at an essentially given value of y along the throat, we will describe these

branes as being localised in the throat. As we will ultimately require the D7-branes to be

located in the bulk, this assumption is not essential.
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Using the above metric (2.1), we obtain the effective four-dimensional theory by inte-

grating over the extra dimensions. The 10D Ricci curvature of the full space-time metric

contains a term proportional to the curvature R4 of gµν of the form R10 ⊃ (R2e2A/α′)R4.

The remaining terms are total derivatives which can be dropped in the effective action.

This implies that the dimensionally reduced Einstein-Hilbert action, in the supergravity

frame, is

1

(2π)7α′4g2
s

∫

d10x
√−g10 R10 ⊃ 1

2κ2
0

∫

d4x
√−g4

(

f(T, T̄ )R4 + 6∂T ∂T̄ f∂µT∂µT̄
)

, (2.2)

where g4 = det gµν . We have introduced the scale κ2
0 = α′gs, and the moduli field T , which

is related to the size of the compactified dimensions

ReT =
R4

2πgsα′2
. (2.3)

We also introduce A0, defined by
∫

d6y
√

g6e
4A = V6e

4A0 . Assuming that the warp factor

is monotonic along the throat, there will then exist a point y0 such that A(y0) = A0.

Two natural situations can be envisaged. For bulk domination, A0 ≈ 0 while for throat

domination we have A0 ≈ Am [16]. We will focus on the latter case, which is consistent for

T ≪ e4A0 [14]. We find

f(T, T̄ ) = e4A0(T + T̄ ) + · · · (2.4)

to leading order in the gravitational constant.

It is useful to define the Einstein frame, where there are no field dependent couplings

in the Einstein-Hilbert action. The Kähler potential there is given by K = −(3/κ2
0) ln f .

The 4D Einstein-frame metric is related to the supergravity frame metric by the conformal

transformation

gE
µν = fgµν =

e4A0R4

πgsα′2
gµν , (2.5)

which brings the gravitational action (2.2) in to the form (2κ2
0)

−1
∫

d4x
√−gER

(E)
4 . Al-

though ultimately we will want to work in the Einstein frame, for the time being, we will

remain in the supergravity frame to calculate the corrections to f .

2.2 Coupling to matter

Let us now introduce matter in this setting. This will induce subleading terms in the

Kähler potential. Consider fields living on a Dp-brane wrapped around a (p − 3)-cycle of

the 6-manifold, with p = (3, 5, 7, 9) in type IIB string theory. Define by d = (9 − p)/2 the

complex dimension of the complex normal bundle to the (p−3) cycle. Split the coordinates

as (xµ, zi, za), µ = 0 . . . 3, i = 1 . . . (p − 3)/2, a = 1 . . . d. The D-brane action is obtained

from the Dirac-Born-Infeld action at leading order

SDp ⊃ − 1

g2
p+1,YM

(

∫

dp+1x
√

−g̃p+1 g̃µν
p+1g̃

ρσ
p+1FµρFνσ

−
∫

dp+1x
√

−g̃p+1ĝ
p+1
ab̄

(Φa, Φ̄b̄)g̃µν∂µΦa∂νΦ̄
b̄

)

. (2.6)
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The gauge coupling constant for the Yang-Mills (YM) field living on the brane is g−2
p+1,YM =

(2πα′)2τp with τp the brane tension; for a BPS brane it is τ−1
p = gs(2π)pα′(p+1)/2. The

gauge field is Aµ along the non-compact dimensions and the Φa’s are transverse modes

to the brane parameterising the normal bundle, hence the contravariant indices. These

fields are promoted to be x-dependent only. The induced metrics are g̃p+1 on the (p − 3)-

cycle and ĝp+1 on the normal bundle. Effectively we have g̃µν,p+1 = α′R−2e−2Agµν and

ĝp+1
ab̄

= (R2e2A/α′)gp+1
ab̄

. The warp factor is evaluated on the brane and gp+1
ab̄

is the metric

gmn induced on the normal bundle, with a Kähler potential gp+1
ab̄

= ∂a∂b̄g
p+1.

Dimensional reduction of (2.6) leads to a 4D Yang-Mills action g−2
YM

∫

d4x
√−g4F

2 with

1

g2
YM

=
R(p−3)Ṽp−3

2πgsα′(p−3)/2
, (2.7)

where we have defined Ṽp−3 = (2π)3−p
∫

dp−3y
√

gp−3e
(p−3)A(y), which is dimensionless in

our conventions. We approximate this as Ṽp−3 = kpe
(p−3)Ab , where kp = O(1) and Ab

depends on the position of the brane in the compactified dimensions. We will focus on

two different situations. First of all, the brane may be in the bulk where the warp factor

is close to unity, so Ab ≈ 0. Another situation corresponds to branes in the throat, then

Ab = Am ≈ A0. Supersymmetry requires the gauge coupling to be the real part of a

holomorphic function g−2
YM = Re fG, implying only a D3/D7 system is supersymmetric.

For these two cases

fG =











k3

2πgs
(p = 3)

k7T e4Ab (p = 7)

(2.8)

with Ab = 0 for bulk branes and Ab = Am for branes in the throat. In the D7 case, the

warp factor implies that the gauge coupling is very small if the branes live in the throat.

As a consequence the branes carrying the standard model fields must live in the bulk.

Notice that, as we assume that both the complex structure moduli and the dilaton

have been fixed by the flux induced superpotential (see next subsection), the gauge cou-

pling function is field independent on D3-branes implying that no gaugino masses can

appear there. Strictly speaking, the dilaton dependence of the D3 gauge kinetic function

fG ∝ S = (2πgs)
−1 can lead to gaugino masses when the dilaton has a non-zero FS term,

i.e., contributes to the supersymmetry breaking. Here we assume that FS = 0 and su-

persymmetry breaking occurs only after dilaton stabilisation leading to gaugino masses

on D7-branes. Another advantage of D7s is the possibility of having intersecting branes.

On these intersections, strings stretching between branes are in bi-fundamental representa-

tions, which can be matched with the standard model representations in an easier fashion.

We will come back to intersecting branes at the end of this section.

Consider matter fields on the branes. Scalar fields on the brane are sections of the

normal bundle to the brane belonging to the adjoint U(N) representation for a stacks of

N Dp-branes (multiple gauge groups are present at intersections of Dp-branes). Their

action (2.6) reduces to

(πgs)
(p−7)/4

2

∫

d4x
√−g4(T + T̄ )(p−3)/4k̄

(p)

ab̄
∂Φa∂Φ̄b̄ , (2.9)
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where

k̄(p) =

∫

dp−3y

(2π)p−3

√
gp−3 e(p−3)(A−A0)gp+1(Φa, Φ̄b̄) ≈ e(p−3)(Ab−A0)k(p)(Φa, Φ̄b̄) , (2.10)

with ĝp+1
ab̄

= (R2e2A/α′)∂a∂b̄g
p+1 the Kähler metric on the normal bundle, and

k(p)(Φa, Φ̄b̄) =

∫

dp−3y

(2π)p−3

√
gp−3 gp+1(Φa, Φ̄b̄) . (2.11)

As before Ab = 0 for branes located in the bulk, and Ab = Am for branes in the throat.

Including (2.9) in the full supergravity frame action (2.2), we find

f = e4A0(T + T̄ ) − κ2
0

6
(T + T̄ )e4Abk(7)(Φa, Φ̄b̄) − κ2

0

2πgs
k(3)(Φa, Φ̄b̄) . (2.12)

Finally, consider matter fields living at the intersections of Dp- with Dp′-branes. These

matter fields live on a submanifold of dimension p + p′ − 12. They are charged under the

gauge groups of both stack of branes, and therefore belong to bi-fundamental represen-

tations. Their contribution to the Kähler potential can be deduced from the previous

result (2.9), with the change p − 3 → p + p′ − 12. On the intersection, the induced metric

reads g̃p∩p′

ab̄
= (e2AR2/α′)gp∩p′

ab̄
, and gp∩p′

ab̄
= ∂a∂b̄g

p∩p′ is the Kähler metric on the normal

bundle to the brane intersection. For intersecting D7-branes p = p′ = 7, located at y = ys

we obtain

f = e4A0(T + T̄ ) − κ2
0

6(πgs)1/2
(T + T̄ )1/2e2Asmk(7∩7)(Φa, Φ̄b̄) (2.13)

where Asm = A(ysm), and

e2Asmk(7∩7)(φa, φ̄b̄) =

∫

d2y
√

g2e
2Ag7∩7(Φa, Φ̄b̄) . (2.14)

Having derived the expression for f , the Einstein frame Kähler potential is K =

−(3/κ2
0) ln(f). For a setup with a single D7-brane at y = yb, and two intersecting D7-

branes at y = ysm, the Kähler potential obtained from (2.12) and (2.13) is

K = −12A0

κ2
0

− 3

κ2
0

ln

[

(T + T̄ )

(

1 − κ2
0

6
e4(Ab−A0)k(7)(Φa, Φ̄b̄) (2.15)

− κ2
0

6(πgs)1/2
(T + T̄ )−1/2e2(Asm−2A0)k(7∩7)(Φa, Φ̄b̄)

)

]

.

This is the main result of this section. In terms of modular weights in the heterotic

notations we find

nD7 = 0, nD3 = −1, nD7∩D7 = −1

2
(2.16)

in agreement with the results of [17]. The weights have a geometrical origin.
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2.3 Fayet-Iliopoulos term

Our model, to be discussed in section 3, possesses an anomalous U(1) symmetry. Stabilising

the Kähler moduli is achieved in the presence of a field-dependent Fayet-Iliopoulos. Here

we briefly recall the microscopic origin of such a term [18 – 20], focusing on how it is affected

by warping. The existence of chiral fields leading to non-perturbative superpotentials on

the branes is linked to a non-vanishing gauge field along the magnetised brane compactified

directions. Hence in this context, potential terms due to the magnetic fields are always

present. We will see that these terms arise in the 4D description due an anomalous U(1)X
symmetry.

It is most convenient to work in the Einstein frame in order to obtain the Einstein

frame potential induced by the brane gauge fields. Ignoring all fields except T , the 10D

uplift of the Einstein frame metric is

ds2 = e−2A(y)−4A0
πgsα

′3

R6(x)
gE
µνdxµdxν + e2A(y)R2(x)gnmdyndym (2.17)

which upon dimensional reduction gives the Einstein-Hilbert action (2κ2
0)

−1
∫

d4x
√−g4R4.

The magnetic flux contribution to the action reads

SYM = − 1

g2
YM,8

∫

d8x
√

−g̃8g̃
nlg̃mkFnmFlk . (2.18)

Using
√−g̃8g̃

nlg̃mk ∝ R−12e−4A(z)−8A0 gives, for a brane located at y = yb,

Vgauge =
e−4A(yb)−8A0

2π2κ4
0(T + T̄ )3

∫

d4y
√

g4(y)FnmFnm . (2.19)

The potential can be identified with a D-term potential coming from an anomalous U(1)

gauge symmetry. Under this U(1) the volume modulus transforms T → T − i(δGS/2)ǫ with

ǫ the infinitesimal gauge parameter, giving rise to a D-term VD = (δ2
GS

KT )2/(8Re fG) with

the gauge kinetic function for a D7 fG in (2.8) and KT = ∂T K follows from (2.15). It

follows that the Green-Schwarz parameter is

δGS =

√
2k7

3πκ2
0

e−4A0

(
∫

d4y
√

g4(y)FnmFnm

)1/2

. (2.20)

The warping dependence of δGS will also be obtained from anomaly mediation condi-

tions (3.8), (3.9). Consistency will then fix the warping dependence of the above magnetic

field integral.

2.4 Superpotential

The presence of fluxes induces a superpotential for the dilaton and the complex structure

moduli of the form [21]

W =

∫

G3 ∧ Ω , (2.21)

– 7 –
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where the 3-form on the compactification manifold can be identified with

Ωnml = η̄Γnmlη , (2.22)

with η a Killing spinor corresponding to the remaining supersymmetry. We have introduced

{γn, γm} = 2gnm and the warped Dirac matrices {Γn,Γm} = 2Gnm with Gnm = e2Agnm.

The superpotential can be written as

W =

∫

d6y
√

G6(η̄Γnmlη)(G3)nml = e3A0W̃0 , (2.23)

where the constant is

W̃0 ≈
∫

d6y
√

g6(η̄γnmlη)(G3)nml . (2.24)

Here and in the following we use the notation that the tilde quantities are independent

of the warp factor, whereas the equivalent quantity without a tilde has some warp factor

absorbed in it. To get the above equation we used that the γ-matrices are of order one,

and in the second line that the integral is dominated by the value of the integrand in the

throat.

Let us now include matter on D-branes. The full superpotential is

W = e3A0W̃0 + W̃SM(Φa) + W̃NP(T,Φi) . (2.25)

The moduli stabilisation potential WNP, which involves the volume modulus T and chiral

fields Φa charged under the condensing gauge group, will be discussed in the next section.

The standard model lives on intersecting D7s in the bulk, and has a superpotential

W̃SM =
1

2
eAsm µ̃abΦ

aΦb +
1

3
λ̃abcΦ

aΦbΦc (2.26)

which contains the Yukawa couplings and a µ-term. We perform a Kähler transformation

K → K +
12A0

κ2
0

, W → e−6A0W (2.27)

which leaves the N = 1 supergravity Lagrangian invariant. This removes the constant from

the Kähler potential (2.15). Consider further the small field approximation for the standard

model fields k
(7∩7)

ab̄
= δab̄, and introduce the rescaled fields φa = Φae−2A0(4πgs)

1/4. This

gives a Kähler potential

K = − 3

κ2
0

ln

[

(T + T̄ )

(

1 − κ2
0

3
(T + T̄ )−1/2

∑

a

|φa|2 − κ2
0

6
e4(Ab−A0)k(7)(Φi, Φ̄j̄)

)

]

, (2.28)

where we have set Asm = 0 appropriate for SM fields in the bulk. The superpotential is

W = e−3A0W̃0 + e−6A0

(

W̃SM(φa) + W̃NP(T,Φi)

)

≡ W0 + WSM(φa) + WNP(T,Φi) . (2.29)

– 8 –
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As before, we use the notation that the tilde quantities are independent of the warp factor,

whereas the equivalent quantity without a tilde has some warp factor absorbed in it. Now

WSM = 1
2µabφ

aφb + λabcφ
aφbφc with

µab = e−2A0(4πgs)
1/2µ̃ab , λabc = (4πgs)

3/4λ̃abc . (2.30)

The effective Yukawa couplings λabc, and thus the standard model masses, do not depend

on the warp factor A0 explicitly. The effective µ term red-shifts as e−2A0 . As this is too

large compared to the gravitino mass, we can instead use the Giudice-Masiero mechanism

to generate a µ term [22]. Indeed, the gravitino mass m3/2 = eκ2
0
Kκ3

0W ∝ e−3A0W0. This

opens up the possibility to tune the scale of supersymmetry breaking by “switching on”

the warping.

2.5 The supergravity approximation

In this subsection we will discuss mass scales, and the regime where the low energy effective

supergravity action is to be trusted.

So far we have expressed all quantities in terms of the fundamental string scale κ0 =√
α′gs. We can switch scales and go to Planck units by simply changing by κ0 → κ4 in all

formulae. For an observer located at y = ysm, which we define to be the location of the

standard model fields, the 4D Planck mass is

m2
Pl ≡

1

κ2
4

=
f(T0)

κ2
0

e2A(ysm)R(T0)
2

α′
=

1

α′

(

8πT 3
0

gs

)1/2

e4A0+2A(ysm) , (2.31)

where T0 is the vacuum expectation value of T . Note that this change of length scale

implies a conformal scaling of the spacetime metric (2.5), gE
µν → κ2

0/κ
2
4 gE

µν , as well as the

Kähler metrics (2.11) and (2.14), k(p) → κ2
0/κ

2
4 k(p). For the remainder of this paper we

will make the replacement κ0 → κ4, and work in units of κ4. The Kähler potential becomes

K = − 3

κ2
4

ln

[

(T + T̄ )

(

1 − κ2
4

3
(T + T̄ )−1/2

∑

a

|φa|2 − κ2
4

6
e4(Ab−A0)k(7)(Φi, Φ̄j̄)

)

]

. (2.32)

The supergravity approximation is valid when the Kaluza-Klein masses of the higher

dimension model are large and the higher order terms in the supergravity Lagrangian are

under control. The lightest KK particles come from the tip of the throat where the length

scales of the extra dimensions are maximal. Typically we expect that the KK masses are

red shifted

m
(n)
KK ≈ ne−2A0mPl (2.33)

for T = O(1) [14]. Thus if m is the typical mass scale in the low energy effective theory,

we require m < e−2A0mPl.

Let us now turn to the higher order terms in the Lagrangian. We use Rn
10 to de-

note n contractions of the ten-dimensional Riemann tensor symbolically (derivatives of the

Riemann tensor can be treated similarly). Typically, upon dimensional reduction in the

supergravity frame, these terms yield

Rn
10 ≈

n
∑

p=0

cpe
(4p−2n)A(y)Rp

4R
n−p
6 (2.34)
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for some coefficients cp. R6 ≈ M2
s , where M2

s = 1/α′ is the string scale. Expanding the

ten-dimensional effective action gives

Seff ≈ M10
s

∫

d10x
√−g10

∞
∑

m=0

dm
Rm

10

M2m
s

≈ M4
s

∫

d4x
√−g4

∞
∑

p=0

cp
Rp

4

M2p
s

(

∞
∑

m=p

dm

∫

d6y
√

g6e
(4p−2m+2)A(y)

)

(2.35)

with d0 = 0. The sum over m is dominated by the term m = p and scales like e(2p+2)A0 .

Note that we retrieve the e4A0 behaviour when p = 1. Expanding the action, and switching

to Planck units gives

Seff ≈ m4
Pl

∫

d4x
√−g4

R4

m2
Pl

(

1 + e2A0
R4

m2
Pl

+ · · ·
)

. (2.36)

Hence the effective action in the supergravity frame after dimensional reduction is a series

expansion where higher order terms are suppressed for m2e2A0 ≪ 1, with m the typical low

energy scale. This is automatic in the regime where throat KK particles are heavy. Thus,

in general, we can neglect the higher order corrections and work in the lowest order of the

supergravity approximation. Although α′ corrections could help with moduli stabilisation

and uplifting, we do not expect them to be useful for large warping. This is the case for

the example in appendix B.

To summarise, we have derived how the various terms in the low energy effective

four-dimensional theory are affected by the warping. The Kähler potential picks up a

constant piece proportional to A0, which originates from the warping dependence of the

6D volume. This translates into a warping down of the F -terms. On the other hand as we

will find in the next section, the D-terms are scaled down by the volume of the 4-cycle,

which for bulk branes is warping independent. When trying to find moduli stabilised

configurations with a small cosmological constant obtained thanks to a large warp factor,

one cannot accommodate large D-terms. The D-terms must be almost vanishing. The

resulting configurations are then F -term uplifted vacua. In the next section, we will present

string inspired configurations with an F -term uplifted minimum; however, we find that

lifting the minimum all the way to Minkowski space proves to be difficult.

3. F -term uplifting with consistent D-terms

So far we have considered a stack of branes with gauge group U(N). By separating the

branes, i.e., giving VEVs to the scalars in the adjoint representation, one can break the

gauge group to a product of U(Ni)’s and U(1)’s. The rank is unaffected by the breaking

and the model is non-chiral as the original fields are in the adjoint representation. In

more general situations such as orientifold compactifications one can obtain chiral spectra

(see [4]). For instance, for a single brane with gauge group U(1), a chiral field arises as

the open string joining the brane and its orientifold image. By taking a stack of (N + 1)

– 10 –



J
H
E
P
0
9
(
2
0
0
7
)
1
2
5

branes and separating one of the branes from the other ones, one can envisage a gauge

group SU(N) × U(1) with a chiral spectrum. Quarks in the fundamental representation

of SU(N) arise as open strings joining the stack of N branes to the single U(1) branes,

antiquarks appear too as open strings joining the stack of branes to the orientifold image

of the U(1) brane. There is also a charged field coming from the open string joining the

U(1) brane to its orientifold image [8].

The presence of chiral matter is intimately linked to the existence of an internal flux

on the U(1)X brane, i.e., the brane is magnetised. In the following we will consider a

supergravity model with such a matter content. In this case, with quarks and antiquarks

in the fundamental and anti-fundamental representations, non-perturbative phenomena

can occur leading to superpotentials involving composite meson fields charged under the

U(1)X [1, 23]. To be concrete, we take N D7-branes, possessing a chiral spectrum of Nf

quark pairs {Φi, Φ̃i} with charges qi and q̄i [4, 13]. In addition there is one SU(N) singlet

Ξ whose U(1)X charge we normalise to −1. We take the quark (and antiquark) charges to

be equal, so qi = q1 (and q̄i = q̄1). The U(1)X is anomalous, the implications of which we

will discuss in subsection 3.2.

3.1 Moduli superpotential

The effective, non-perturbative superpotential generated by the gaugino condensation on

the stacks of D7-branes is

W̃NP = κ−3
4 (N − Nf )

(

e−8π2fG

κ2
4 det(ΦiΦ̃j)

)1/(N−Nf )

(3.1)

where fG is given by (2.8) for p = 7. The gaugino condensation branes are located in

the bulk with A(yb) = Ab. Together with W0, this provides a stabilising potential for the

volume modulus T . In addition we introduce a direct coupling between the chiral matter

fields [8]

W̃m = κ−1+q
4 m̃ det(ΦiΦ̃

j)1/Nf Ξq (3.2)

where m̃ is constant and q = q1+ q̄1. For simplicity we assume an overall squark condensate

χ, for which |Φi|2 = |Φ̄i|2 = |χ|2e4(A0−Ab)/Nf . The composite field χ then has charge q/2.

In the small field approximation k(7) =
∑

i(|Φi|2 + |Φ̃i|2) + |Ξ|2, where we have defined

|Ξ|2 = 2|ζ|2e4(A0−Ab). The Kähler potential then reduces to

K = − 3

κ2
4

ln

[

(T + T̄ )

(

1 − κ2
4

3
(T + T̄ )−1/2

∑

a

|φa|2 − κ2
4

3

(

|χ|2 + |ζ|2
)

)

]

. (3.3)

The superpotential relevant for moduli stabilisation is

W = e−3A0W̃0 + e−6A0

[

W̃NP(T, χ) + W̃m(χ, ζ)
]

≡ W0 + WNP(T, χ) + Wm(χ, ζ) (3.4)

– 11 –
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with

WNP = A
e−aT

χb
=

e−2(3+b)A0+2bAb

κb+3
4

Ã
e−aT

χb
,

Wm = mζqχ2 =
e−2(1−q)A0−2(2+q)Ab

κ1−q
4

2q/2m̃ ζqχ2 , (3.5)

and

Ã = (N − Nf )N
b/2
f , a =

8π2kNe4Ab

N − Nf
, b =

2Nf

N − Nf
. (3.6)

As a result of the warping, the scales A and m in the non-perturbative superpotential are

no longer at the Planck scale.

The F -term potential is

VF = eκ2
4
K

(

DIWKIJ̄DJW − 3κ2
4|W |2

)

(3.7)

with DI = ∂IW + κ2
4KIW .

3.2 Anomaly cancellation and D-term potential

The model possesses an anomalous U(1)X symmetry whose anomaly can be cancelled by

the Green-Schwarz mechanism if T transforms non-trivially under U(1)X . Under a gauge

transformation with infinitesimal parameter ǫ, δT = −i(δGS/2)ǫ, where δGS is the Green-

Schwarz parameter. The corresponding transformations for the quarks and antiquarks

living on the magnetised brane, and the SU(N) singlet, are respectively δΦi = iq1ǫΦi,

δΦ̃i = iq̄1ǫΦ̃i, and δΞ = −iǫΞ. The required cancellation condition for the SU(N)2×U(1)X
anomaly is

kNe4AbδGS =
Nf

4π2
(q1 + q̄1), (3.8)

and the one for the U(1)3X anomaly is

kXe4AbδGS =
1

6π2
(NNf (q3

1 + q̄3
1) − 1) . (3.9)

The U(1)X D-term potential follows from VD = (2Re fX)−1(iηIKI)
2, with I = {T, χ, ζ}

and η = {−iδGS/2, iq/2χ,−iζ}. Here ηIǫ are the infinitesimal gauge transformations of the

fields. Hence VD ∝ δ2
GS

/kX ∝ e−12Ab . For bulk D7s Ab = 0, and VD is independent of the

warp factor. This is a crucial result as it implies that, for gYM ∼ 1, D-terms must vanish

in order for the gravitino mass to be warped down.

Using (3.3) the D-term potential is then

VD =
9δ2

GS

8κ2
4(T + T̄ )2 Re fX

(

1 +
(T + T̄ )

3δGSY

[

q|χ|2 − 2|ζ|2
]

)2

(3.10)

with q = q1 + q̄1 and

Y = 1 − κ2
4

3
|χ|2 − κ2

4

3
|ζ|2 . (3.11)
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4. Uplifting procedures

As discussed in section 3, we consider an N = 1 SUGRA model with the following data:

K = − 3

κ2
4

ln

[

(T + T̄ )

(

1 − κ2
4

3
{|χ|2 + |ζ|2}

)]

,

W = W0 + A
e−aT

χb
+ mζqχ2 , (4.1)

and the D-term potential is given by (3.10), with the gauge kinetic function fX = kXT .

Gauge invariance relates the parameters bq = aδGS. The warping dependence of the super-

potential is given by (3.4), (3.5).

In this section we will look for (metastable) vacua of this system, which have zero cos-

mological constant and low scale SUSY breaking. Notice first that the D-term is warping

independent whereas the F -terms depend on the warping. Guaranteeing a small supersym-

metry breaking scale can only be achieved for a small value of the D-term contribution.

This holds true even in the absence of warping.

The D-term can be (partially) cancelled by a non-zero VEV for ζ. This generates a

mass term for the χ-fields. If the mass is greater than the other mass scales in the problem

the χ-fields can be integrated out. The resulting effective theory involving only T and ζ

has a SUSY preserving F = D = 0 AdS minimum. An additional F -term sector is needed

to break SUSY and lift this minimum to Minkowski. We discuss this in more detail in

subsection 4.2 where we add an Intriligator-Seiberg-Shih (ISS) [7] section to the model.

It is clear then that to get a SUSY breaking Minkowski vacuum in the model (4.1), we

must be in the regime where the χ-fields are light and cannot be integrated out. This is

the approach taken in the next subsection. We will perform a systematic expansion of the

potential in a small parameter ǫ ∝ Tχ2/ζ2. However, we do not find a consistent solution

either analytically or numerically, at least not for credible parameter choices. This strongly

suggests that the only way to obtain a Minkowski vacuum with a small gravitino mass in

our model with D-terms, is by adding an extra F -term lifting section.

Readers only interested in a working model can go immediately to subsection 4.2.

4.1 Uplifting and stabilisation with light quarks

As discussed above, we are looking for a D ≈ 0 minimum allowing for the possibility of

low scale SUSY breaking. Furthermore, we assume that the quarks are light and cannot

be integrated out. Taking inspiration from [8], we will consider the limit χ2 ≪ m2
Pl and

T ≫ 1. Then the dominant contributions to the potential are VD and

V0 = eK
(

KT T̄ |DT W |2 − 3|W |2
)

=
aAe−aT

2T 2Y 3

(

AaT e−aT

3χ2b
+

W

χb

)

(4.2)

V1 = eKKχχ̄|DχW |2 =
3 − χ2

24T 3Y 2

(

2mζqχ − b
Ae−aT

χb+1
+

χ

Y
W

)2

. (4.3)

The Kζζ̄ |DζW |2 contribution turns out to be subdominant. All warping dependence has

been absorbed into the parameters A,W0,m, and we work in units with κ2
4 = 1. To
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leading order in χ, V1 reduces to the global SUSY potential. Perturbatively, one can find

a minimum of the potential around the solutions of D = 0 and ∂χW = 0 (i.e. Fχ = 0 for a

global SUSY theory). Thus the zeroth order approximate solution is

ζ2
0 =

3δGS

4T0
, χb+2

0 =
bAe−aT0

2mζq
0

(4.4)

with T0 unspecified at this stage. The above solution (4.4) then implies W
(0)
m = (b/2)W

(0)
NP =

mǫζ2+q
0 /(qaT0).

Stabilising the volume modulus T is the hard part. Write T = T0(1+ ǫT1 + ǫ2T2 + · · ·),
and similarly for χ and ζ, with ǫ a small expansion parameter. If, following [8], we expand

in ǫ = χ2/ζ2 we find a runaway behaviour for at least one combination of the fields. To

avoid this we expand instead in

1 ≫ ǫ ≡ qaT0χ
2
0

ζ2
0

≫ 1√
aT0

. (4.5)

We expand around the lowest order solution (4.4). The details of this expansion can be

found in appendix A; here we only discuss the main results. The first order corrections to

χ, ζ are fixed by VD and V1, which then leaves V0 to determine the correction to T . To

leading order, the remaining terms in the potential (arising from V0) are

V
(1)
min − 3m2ǫ3ζ2q

0

8(2 + b)a2T 5
0

{

(2 + b + 4a + bq) +
aT0W0

mǫζq
0

(8 + 4b + 4a + bq)

}

T1 + · · · (4.6)

with

V
(1)
min =

3m2ǫ2ζ2q
0

8a2T 5
0

(

1 + 2
aT0W0

mǫζq
0

)

. (4.7)

In general, we see that the above potential has runaway behaviour for T1, indicating that

T0 and the solution (4.4) is not close to a minimum. The exception to this is

aT0W0

mǫζq
0

= − 2 + b + bq + 4a

4(2 + b) + bq + 4a
(4.8)

in which case the T1 terms in (4.6) cancel, leaving open the possibility that T1 could be

stabilised by higher order terms. The second order results, given explicitly in appendix A,

allow for this possibility. Thus if our solution is to be an extremum the above condition

must be satisfied. Note that this implies W0 ∼ mǫζq
0/T0, i.e. W0 ≪ m; this is natural in a

warped background, see (3.4), (3.5).

For a special solution satisfying (4.8) the potential at the minimum is V
(1)
min (4.7).

Picking T0 such that V
(1)
min vanishes, and we have a Minkowski vacuum, requires

4a ≈ 2(2 + b) − bq . (4.9)

For the parameters (3.6), with Ab = 0, this implies N ≈ 8π2kN + Nfq/2. Satisfying this is

only possible for large values of N or small kN . The value of T0 is

aT0 ≈ b + 2

2
ln

mq

(−2W0)
+ ln

Ab

2m
+ a ln

4

3δGS

. (4.10)
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Since (aT0) depends only logarithmically on the parameters it will never be large for mod-

erate values of a, b, etc., and so it is extremely hard to satisfy the condition (4.5) for which

our expansion is valid. Indeed, scanning through parameter space it follows that in the

regime of validity of the expansion (4.5), the solution (4.9), (4.10) requires very large gauge

groups N ∼ 102 − 103. We reject this possibility on the grounds that the presence of so

many D7-branes would back react on the geometry, and invalidate the supergravity results

derived in section 2, which motivate this model.

To conclude, we do not find a Minkowski vacuum with D ≈ 0 for light quarks, at least

not for credible parameter choices. The obstacle to finding a metastable minimum is the

stabilisation of the volume modulus T . Since our analytics only cover part of parameter

space, we have also searched numerically for D ≈ 0 solutions, but with negative results as

well. These conclusions are independent of the amount of warping.

4.2 Uplifting with an ISS sector

In this section we consider the case of heavy quarks. D ≈ 0 implies ζ 6= 0, which generates

a mass term for the χ-fields. If their mass is greater than the other mass scales in the

problem the χ-fields can be integrated out. The resulting effective potential has a SUSY

preserving AdS minimum. We include an ISS sector for the necessary uplifting.

But before we discuss this model in detail let us say a few words about higher order

α′ corrections to the Kähler potential. As noted in [20], if these corrections are large the

SUSY conditions F = D = 0 cannot be satisfied, and supersymmetry is broken, possibly at

a low scale. However, this does not work for our setup for two reasons. First, the resulting

minimum in our model is dS. And secondly, the α′ corrections are exponentially small in

the presence of warping, and do not play a rôle. More details can be found in appendix B.

We can integrate out the heavy quark fields by solving the Fχ = 0 constraint in the

global supersymmetry limit, i.e. ∂χW = 0, leading to

χb+2 =
bAe−aT

2mζq
(4.11)

and

W = W0 + (2 + b)
A

2

(

2m

bA

)
b

b+2

ζ
qb

b+2 e−
2a

b+2
T (4.12)

with W0 ∼ e−3A0 . This system has a SUSY AdS minimum with FT = Fζ = D = 0:

The D = 0 constraint fixes ζ, whereas FT fixes T , and Fζ = 0 follows then automatically

as a consequence of gauge invariance. The superpotential is dominated by the constant

piece W0. Extra input is needed to break SUSY and lift the solution to Minkowski. For

definiteness, we will include an ISS sector [7] for this purpose. In the absence of warping,

the coupling to an ISS sector has been studied in [24]. Working at the level of an effective

field theory description, we do not attempt to present a full string-theoretic construction

of the appearance of an ISS sector in warped compactifications. As in [24], we only extract

the ingredients which are necessary at the supergravity level. For more details about the

possible string theory constructions, see [25 – 27].
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Consider a new contribution to the superpotential

W̃ISS = h̃ tr(q̄Mq) − h̃µ̃2tr(M) . (4.13)

The warping dependence of the coupling constants is left undetermined as it depends on

the details of the possible string realisation of the model. We will find constraints on this

warping dependence in order to obtain a low gravitino mass. If these constraints are not

satisfied in explicit models of compactification, the resulting low energy supergravity model

with ISS uplifting will not lead to a LHC testable phenomenology.

The quark fields qa
i are in the (N,Nf ) representation of SU(N) × SU(Nf ), q̄a

i in the

(N̄ , N̄f ) and M i
j in the adjoint representation of SU(Nf ). In a string context, the quark

fields come from open strings stretching between N D3 and Nf D7-branes. The meson

fields M are interpreted as the position of the D7-branes. The D3-branes are placed

at singular points in an orientifold compactification which breaks supersymmetry down

to N=1. All the modular weights of the quarks and mesons should vanish, to prevent

the appearance of a no-scale instability of the vacuum [24, 28]. We neglect the moduli

fields corresponding to the motion of the D3-branes off the singular points and the rôle of

fractional branes. Although these moduli could destabilise the vacuum, the study of their

dynamics is left for future work. We also consider that all the branes are placed in the

bulk of the compactification. Of course, explicit constructions should explain the form of

the superpotential, e.g. trilinear couplings appear naturally in quiver models, see [25 – 27]

for more detail.

The Kähler potential follows from the results in section 2.1. For the D7 meson, the

modular weight is 0. For the field joining the D3 and the D7, the brane intersection has

codimension 8, with 6 directions orthogonal to the D3 and 2 to the D7. Now as the D3

is glued at a fixed point, it is not free to move and therefore there are effectively only 2

degrees of motion as for a D7-brane. Hence the modular weight is 0 too. Expanding in

small fields compared to the Planck scale, this gives an additive contribution to the Kähler

potential as already obtained in [24]

K = |q|2 + |q̃|2 + |M |2 . (4.14)

This justifies the choice of meson fields as the position of D7 branes and the open strings

between the D3 and D7-branes as quark fields. If their modular weights were not zero, the

vacuum of the theory would have been marginally unstable [24, 28].

Following the strategy in subsection 2.4, we factor out an overall e4A0 from the Kähler

potential, perform a Kähler transformation, and rescale all the brane fields φi → e2A0φi.

This results in a Kähler potential from which all warp factors have been removed; in

particular, the ISS fields q, q̄ and M have canonical kinetic terms. All warping effects

reside in the superpotential, which for the ISS sector becomes

WISS = h tr(q̄Mq) − hµ2tr(M), (4.15)

with h = h̃ not picking up any extra warping dependence, and µ2 = e−4A0 µ̃2. At the global

supersymmetry level, the ISS sector has a supersymmetry breaking vacuum

M = 0 , qa
i = q̃i

a = µδi
a . (4.16)
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The vacuum energy is

VISS = (N − Nf )h2µ4 . (4.17)

Let us now couple the ISS sector to the rest of the model including the consistent D-term.

As µ ≪ mPl and expanding in the small VEVs of the ISS sector, the leading terms in the

scalar potential are

V =
1

(T + T̄ )3

[

V (q, q̃,M) + V (T, ζ)

]

(4.18)

where we have taken into account that Y ≈ 1 when the VEV of ζ is small compared to the

Planck scale. The potential V (q, q̃,M) is the global supersymmetry potential in the ISS

sector. In the large T expansion, the minimum of this potential is obtained by imposing a

separate minimum for V (T, χi) and VISS (the corrections terms to the T equation coming

from the ISS sector are in 1/T 4). As a result, the cosmological constant at the minimum

is given by

Vmin ≈ (N − Nf )h2µ4 − 3W 2
0

8T 3
(4.19)

where we have neglected the ζ0 contribution. The minimum can be set to zero provided

hµ2 ≈
√

3

N − Nf
|W0| . (4.20)

Let us restore the warp factors. The Minkowski minimum is obtained by balancing hµ2

with W0 in (4.20) above. Since W0 ∝ e−3A0 this can be achieved only if hµ̃2 scales as eA0 .

If this is not the case, the gravitino mass cannot be warped down. However, if it is the case,

the gravitino mass m3/2 ≈ |W0|/(2T0)
3/2 can be in the TeV range if hµ2 ∼ W0 ∼ 10−15.

Using the warping of W0 ∝ e−3A0 , this translates into a constraint on A0:

e−A0 ≈ 10−5 . (4.21)

We have thus found that a relatively small warping is enough to lead to a small grav-

itino mass once a consistent D-term model is coupled to an ISS sector. Moreover, this

result depends on the warping dependence of the mass term of the ISS uplifting sector

and would allow to discriminate explicit ISS uplifting procedures leading to LHC testable

supersymmetry breaking schemes.

5. Conclusions

In this paper we analysed the low energy supergravity action in warped spacetimes with

matter on D3 and (intersecting) D7-branes. We dimensionally reduced the action to find

the warping dependence of the various terms in the 4D action. A central assumption in our

setup is that the throat dominates the volume of the 6D compactified space. This is valid

if the volume modulus T , which parameterises the bulk volume V
2/3
bulk ∼ T , is stabilised at

moderately large volumes: T ≪ e4A0 , with A0 the warp factor in the tip of the throat.

The 4D action for matter on bulk D3 and D7-branes (wrapped around 4-cycles which lie

entirely in the bulk) is warping independent. The warping only enters via the modulus field
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T , which is a truly ten-dimensional field, and thus feels the total 6D volume of compactified

space. This is translated into a scaling down of the F -term potential VF ∝ e−6A0 via a

Kähler transformation. In contrast, the D-term is warping independent.

To study the effect of warping on moduli stabilisation and supersymmetry breaking

we applied it to simple string inspired models with or without α′ corrections in the Kähler

potential [8]. In these models the moduli sector arises from matter on magnetised bulk D7-

branes, and has a symmetry group SU(N)×U(1). The chiral matter content is a meson field

and an SU(N) singlet; the volume modulus T is charged under the U(1). Strong SU(N)

gauge dynamics gives a non-perturbative potential that stabilises the volume modulus at

O(1) values. The minimum is uplifted by F - and D-terms.

The supersymmetric standard model resides on intersecting D7-branes. Gauge cou-

plings of order one dictates that these branes are located in the bulk. Supersymmetry

breaking by the moduli sector is transferred to the standard model fields by gravitational

interactions. Low scale SUSY breaking with a TeV scale gravitino mass requires both the

F - and D-term to be small compared to the Planck scale. Since the D-term is warping

independent, this is only possible in models in which the D-term (nearly) cancels D ≈ 0.

In the presented models, it is indeed possible to find D ≈ 0 solutions. In general

the resulting minimum is anti de Sitter, although for some parameter choices non-zero F -

terms are enough to raise the minimum to a Minkowski vacuum. Low scale SUSY cannot

be achieved by turning on a moderate warping. By coupling to an ISS sector we find

that low energy SUSY can be achieved. The AdS vacua is uplifted via the ISS sector for

moderate warping. This results in a small gravitino mass for warping of the order 10−5.
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A. Uplifting and stabilisation with light quarks

In this appendix we give the details of the expansion performed in subsection 4.1. Expand-

ing the potential around the zeroth order solution (4.4) to first order in ǫ (4.5) gives

VD =
9δ2

GS

32kXT 3
0

[

ǫ2D2
1 + O(ǫ3)

]

, V1 =
3bm2ζ2q

0

8a2T 5
0

ǫ3F 2
1 + · · · , (A.1)

V0 = V
(1)
min +

3mǫ2ζq
0

8(2 + b)a2T 5
0

{

mǫζq
0 [aδGSD1 − 2bF1 − (2 + b + 4a + bq)T1] (A.2)

+ aT0W0 [aδGSD1 − 2bF1 − (8 + 4b + 4a + bq)T1]
}

+ · · ·

with

D1 = 2ζ1 + T1 , F1 = (2 + b)χ1 + aT1 + qζ1 , (A.3)
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where we used gauge invariance bq = aδGS. The (· · ·) in the above expressions correspond to

O(m2ζ2q
0 T−5

0 ǫ4,mζq
0T−4

0 W0ǫ
3,W 2

0 T−3
0 ǫ2) terms. As discussed in the main text, the above

potential does not stabilise T1. The exception to this if (4.8) is satisfied, leaving open the

possibility that T1 could be stabilised by higher order terms the potential. This is only

possible if W0 ∼ mǫζq
0/T0, i.e. if W0 ≪ m. From subsection 3.1, we expect W0/m ∼

e3A0+2(2+q)(Ab−A0), which is indeed tiny when A0 is large and Ab is close to zero. Without

warping the above conditions will be difficult to fulfil.

The combination F1 is stabilised by the above F -terms, and minimising V0 + V1 with

respect to it gives

F1 =
1

2 + b

(

1 +
aT0W0

mǫζq
0

)

. (A.4)

The combination D1 is stabilised by V0 + VD at

D1 = − 2

3(2 + b)

(

1 +
aT0W0

mǫζq
0

)

kXm2ζ2q
0 ǫ

δGSaT 2
0

(A.5)

which, assuming (4.8), is negligible unless W 2
0 ∼ ǫδGS/kX . From now on we will assume,

for simplicity, that VD dominates the other parts of the potential, and so D1 = 0.

Setting V
(1)
min = 0 to obtain a Minkowski vacuum requires (4.9), (4.10). The condi-

tion (4.5) implies

1

(aT0)(2+q)/2
≫ (−2W0)

m

(

4

3bq

)q/2

≫ 1

(aT0)(3+q)/2
. (A.6)

From (3.5) we find A/m ∼ e2(b+2+q)(Ab−A0). Combining this with δGS ∼ e−4Ab we find

aT0 ∼
(

a − 3bq

4

)

A0 + (4a − bq)(Ab − A0) . (A.7)

For Ab = 0, W0/m ∼ e−(1+2q)A0 and aT0 ∼ (bq − 12a)A0/4. To satisfy (A.6) and the other

consistency conditions, we need to take N and Nf large. For example, consider N = 1024,

Nf = 1023, kN = 1/π2. Then determine a, b, q, δGS from (3.6), (3.8) and (4.9); this gives

a = 8, b = 2046, q = 1.986, δGS = 508. Taking A0 = 2, we then obtain aT0 ≈ 1936 and

T0 ≈ 242 from (4.10). The expansion parameter in this case ǫ = 0.12, which marginally

satisfies (4.5). However, taking N ∼ 103 D7-branes is not a particularly realistic situation.

For completeness, we also give the higher order expansion of the potential. To next

order in ǫ, we find

VD =
9δ2

GS

32kXT 3
0

[

ǫ4D2
2 + O(ǫ5)

]

(A.8)

VF = const. +
3W 2

0 ǫ2

2b(2 + b)T 3
0

{

[

4(a − 1)2 + (a − 2)(2a − 1)b
]

T 2
1

+(2 + b − 2a)b

[

aT1

4(2 + b)
+ D2

]

+ O(ǫ)

}

(A.9)

with D2 = 2ζ2 + T2 − 3T 2
1 /4. The D-term part of the potential stabilises D2. The above

solution will only be a minimum if the coefficient of T 2
1 in (A.9) is positive, otherwise T1

will not be stabilised. We see that for the above parameters, we do indeed have a minimum.
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B. Large volume stabilisation with higher order α
′ corrections

After integrating out the quark fields, the effective superpotential (4.12) has a SUSY AdS

min with F = D = 0. This conclusion can be avoided if higher order α′ corrections to the

Kähler potential play a rôle [20]. This allows for the possibility of large volume stabilisations

with Re T ≫ 1. In this limit the non-perturbative effects are sub-dominant, and the SUSY

preserving condition F = 0 cannot be satisfied making a Minkowski minimum is possible.

The α′ corrections come from terms of the form

ǫABM1M2...M8ǫABN1N2...n8
RM1M2

N1N2RM3M4

N3N4RM5M6

N5N6RM7M8

N7N8 (B.1)

in the 10D action [29]. Upon dimensional reduction it leads to a correction of the Kähler

potential, which becomes (after performing the Kähler transformation (2.27)) [20, 29]

K = − 2

κ2
4

ln
[

(T + T̄ )3/2 + ξ
]

− 3

κ2
4

ln
[

1 − κ2
4

3
|ζ|2

]

(B.2)

with

ξ = e−4A0 ξ̃ (B.3)

parameterising the α′ corrections. We see that the higher order curvature term is warped

down with respect to the Einstein term, as was shown in subsection 2.5. In the limit

A0 → 0 our results agree with the literature [13], and in the limit ξ → 0 it reduces to our

previous result (3.3). The size of the corrections diminishes rapidly for large warping. It is

thus expected that it cannot play a rôle in this limit. As we will show now, this is indeed

the case.

To analyse the system we make a 1/TR expansion with TR = ReT . At lowest order

the F and D-term potential are

VF =
W 2

0

(2TR)3Y 3







|ζ|2 +
3ξ

2(2TR)3/2
+ O

(

ζ2,
ξ

T
3/2
R

)2






+ Vnon−pert

VD =
9δ2

GS

32kXT 3
R

(

1 − 4TR

3δGSY
|ζ|2

)2

(B.4)

with Y = (1−|ζ|2/3) and Vnon−pert = VF − eK(Kı̄K
ı̄jKj − 3)W 2

0 , i.e. Vnon−pert includes all

terms with non-perturbative e−(2aT )/(b+2) factors. Both terms come in at the same order,

which gives a D 6= 0 minimum, with high scale SUSY breaking. This can be avoided if

W 2
0 ≪ 1/TR. Then the D-term potential dominates, and ζ will adjust itself to cancel it:

|ζ0|2 =
3δGS

4TR
. (B.5)

One linear combination of the phase fields is fixed by the non-perturbative potential, the

orthogonal contribution remains massless and gets eaten by the anomalous U(1). TR is

fixed at higher order. Write ζ = ζ0[1 + ζ1/TR + O(1/T 2
R)], and expand the potential to
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lowest order

VF =
W 2

0

(2TR)3

[

3δGS

4TR

(

1 +
2

TR
ζ1

)

+
3ξ

2(2TR)3/2

]

+ Vnon−pert + · · ·

VD =
9δ2

GS

8kXT 5
R

(

δGS

8
+ ζ1

)2

. (B.6)

The field |ζ| is fixed at this and successively higher orders by the condition D = 0. Although

|ζ| also appears in the F -term potential, it will always be at higher order. The volume

modulus is stabilised by the F -term potential, which requires ξ < 0. The F -term potential

is minimised at

TR =
81ξ2

128 δ2
GS

(B.7)

at a value

Vmin =
δGSW

2
0

96T 4
R

. (B.8)

The minimum is dS, not a viable cosmological solution. The warp dependence of ξ (B.3)

does not help here, as TR will be small for large warping, and our expansion in 1/TR

will break down. The difference between our results and those of [20], who did find a

AdS/Minkowski minimum, is the different modular weight for ζ.
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